14.71
                                            Książki
                                            Aksjomat
                                        
                                        Miniatury matematyczne 71
                                                    14,71 zł                                                
                                                                                            
                                                        Cena rekomendowana: 20,53 zł                                                        
                                                             
                                                            
                                                    
                                                                                                                                        
                                            
                                            
                                            
                                            
                                            
                                                                                            Cena okładkowa/rekomendowana przez wydawcę/producenta.
                                                        
                                                        
                                                        Wysyłka: 1-3 dni robocze
+ czas dostawy
                                                                                                    + czas dostawy
Opis
                                Do Czytelników
W skład tegorocznego tomiku miniatur dla szkół średnich weszły cztery artykuły. Pierwszy z nich poświęcony jest paraboli. Ze wszystkich kształtów obłych badanych przez matematyków greckich w starożytności w geometrii szkolnej zachował się jedynie okrąg. I to wcale nie dlatego, że inne kształty okazały się nieistotne lub nieużyteczne. Wystarczy przypomnieć, że Ziemia obiega Słońce po elipsie, że gdyby zaniedbać opór powietrza, to wystrzelony pocisk lub kanapka strącona ze stołu poruszałyby się po paraboli i że z powodów czysto geometrycznych najbardziej pożądanym kształtem powierzchni odbijającej (czy to w reflektorze samochodowym, czy to w antenie satelitarnej) jest powierzchnia o przekroju parabolicznym. Uczeń współczesnej szkoły poznaje parabolę jako wykres funkcji kwadratowej i kojarzy ją raczej z algebrą niż z geometrią. Nie jest świadom, że w starożytności zdefiniowano ją w sposób czysto geometryczny i udowodniono wiele jej własności. Czy przyczyną tego stanu rzeczy była trudność w wykreśleniu paraboli w zeszycie? Dzisiaj, gdy uczeń coraz chętniej zamienia papier i cyrkiel na ekran laptopa i program graficzny, ta przeszkoda znika. Autor, doświadczony nauczyciel geometrii pokoleń uczniów i studentów, proponuje Wam wspólne, wspomagane komputerowo odkrywanie geometrii paraboli.
Druga miniatura nosi nieco mylący tytuł Trzeba sobie pomagać. Nie chodzi tu jednak o stosunki międzyludzkie i kooperacją, a o pomaganie sobie przy rozwiązywaniu zadań dotyczących jednego działu matematyki metodami wziętymi z zupełnie innego, czasami pozornie bardzo odległego działu. Autorki na przykładzie zadań pochodzących z różnych olimpiad i konkursów pokazują, jak można rozwiązać problem sformułowany czysto geometrycznie za pomocą metod algebraicznych i odwrotnie, jak użyć geometrii do rozwiązania problemów algebraicznych. Taki przepływ metod i idei nie jest rzeczą wyjątkową i zwykle prowadzi do ciekawych wniosków, a czasami do powstania nowych dziedzin matematyki oprócz znanej ze szkoły geometrii analitycznej mamy na przykład geometrię algebraiczną i analityczną teorię liczb.
W następnej miniaturze nie znajdziecie ani zadań szkolnych, ani konkursowych, ani nawet twierdzeń, które mogą okazać się przydatne do ich rozwiązana. Została ona pomyślana jako opowieść o tym, co obecnie dzieje się w matematyce oczywiście nie w całej matematyce, a jedynie na pewnym, wybranym odcinku. Tym odcinkiem jest tak zwana teoria złożoności zajmująca się w pewnym uproszczeniu pytaniem, co można obliczyć za pomocą komputerów. A że jest to raczej opowieść niż wykład, nie zrażajcie się, jeśli pewne szczegóły wydadzą się Wam niejasne i spróbujcie mimo to doczytać ją do końca.
Ostatnia miniatura traktuje o pewnych trójkątach liczbowych. Najsłynniejszy z nich zwany jest trójkątem Pascala, gdyż siedemnastowieczny francuski matematyk i filozof francuski Błażej Pascal poświęcił mu kilka prac. Liczby pojawiające się w tym trójkącie mają zarówno interpretację algebraiczną jak i kombinatoryczną i autorzy używają obu interpretacji do dowodu pewnych własności tych liczb. Mniej znany jest trójkąt nazwany nazwiskiem innego siedemnastowiecznego matematyka i filozofa, tym razem niemieckiego, Gottfrieda Wilhelma Leibniza. Jakkolwiek liczby występujące w obu trójkątach są ze sobą ściśle powiązane, to trójkąt Leibniza odegrał istotną rolę w rozwoju innej dziedziny matematyki, tak zwanej analizy matematycznej.
                        W skład tegorocznego tomiku miniatur dla szkół średnich weszły cztery artykuły. Pierwszy z nich poświęcony jest paraboli. Ze wszystkich kształtów obłych badanych przez matematyków greckich w starożytności w geometrii szkolnej zachował się jedynie okrąg. I to wcale nie dlatego, że inne kształty okazały się nieistotne lub nieużyteczne. Wystarczy przypomnieć, że Ziemia obiega Słońce po elipsie, że gdyby zaniedbać opór powietrza, to wystrzelony pocisk lub kanapka strącona ze stołu poruszałyby się po paraboli i że z powodów czysto geometrycznych najbardziej pożądanym kształtem powierzchni odbijającej (czy to w reflektorze samochodowym, czy to w antenie satelitarnej) jest powierzchnia o przekroju parabolicznym. Uczeń współczesnej szkoły poznaje parabolę jako wykres funkcji kwadratowej i kojarzy ją raczej z algebrą niż z geometrią. Nie jest świadom, że w starożytności zdefiniowano ją w sposób czysto geometryczny i udowodniono wiele jej własności. Czy przyczyną tego stanu rzeczy była trudność w wykreśleniu paraboli w zeszycie? Dzisiaj, gdy uczeń coraz chętniej zamienia papier i cyrkiel na ekran laptopa i program graficzny, ta przeszkoda znika. Autor, doświadczony nauczyciel geometrii pokoleń uczniów i studentów, proponuje Wam wspólne, wspomagane komputerowo odkrywanie geometrii paraboli.
Druga miniatura nosi nieco mylący tytuł Trzeba sobie pomagać. Nie chodzi tu jednak o stosunki międzyludzkie i kooperacją, a o pomaganie sobie przy rozwiązywaniu zadań dotyczących jednego działu matematyki metodami wziętymi z zupełnie innego, czasami pozornie bardzo odległego działu. Autorki na przykładzie zadań pochodzących z różnych olimpiad i konkursów pokazują, jak można rozwiązać problem sformułowany czysto geometrycznie za pomocą metod algebraicznych i odwrotnie, jak użyć geometrii do rozwiązania problemów algebraicznych. Taki przepływ metod i idei nie jest rzeczą wyjątkową i zwykle prowadzi do ciekawych wniosków, a czasami do powstania nowych dziedzin matematyki oprócz znanej ze szkoły geometrii analitycznej mamy na przykład geometrię algebraiczną i analityczną teorię liczb.
W następnej miniaturze nie znajdziecie ani zadań szkolnych, ani konkursowych, ani nawet twierdzeń, które mogą okazać się przydatne do ich rozwiązana. Została ona pomyślana jako opowieść o tym, co obecnie dzieje się w matematyce oczywiście nie w całej matematyce, a jedynie na pewnym, wybranym odcinku. Tym odcinkiem jest tak zwana teoria złożoności zajmująca się w pewnym uproszczeniu pytaniem, co można obliczyć za pomocą komputerów. A że jest to raczej opowieść niż wykład, nie zrażajcie się, jeśli pewne szczegóły wydadzą się Wam niejasne i spróbujcie mimo to doczytać ją do końca.
Ostatnia miniatura traktuje o pewnych trójkątach liczbowych. Najsłynniejszy z nich zwany jest trójkątem Pascala, gdyż siedemnastowieczny francuski matematyk i filozof francuski Błażej Pascal poświęcił mu kilka prac. Liczby pojawiające się w tym trójkącie mają zarówno interpretację algebraiczną jak i kombinatoryczną i autorzy używają obu interpretacji do dowodu pewnych własności tych liczb. Mniej znany jest trójkąt nazwany nazwiskiem innego siedemnastowiecznego matematyka i filozofa, tym razem niemieckiego, Gottfrieda Wilhelma Leibniza. Jakkolwiek liczby występujące w obu trójkątach są ze sobą ściśle powiązane, to trójkąt Leibniza odegrał istotną rolę w rozwoju innej dziedziny matematyki, tak zwanej analizy matematycznej.
Kraj produkcji: Polska
Szczegóły
Tytuł
                                        Miniatury matematyczne 71
                                    
                                                                                                            Autor                                                                                                    
                                                
                                            
                                                                                                                                                                        Wydawnictwo                                                                                                                                                            
                                                
                                            
                                                                                                            Seria                                                                                                    
                                                
                                            Oprawa
                                            okładka miękka
                                        Ilość stron
                                            76
                                        Format
                                            240x163x5 mm
                                        ISBN
                                            9788364660863
                                        Rodzaj
                                            Książka
                                        Stan
                                            Nowy
                                        EAN
                                            9788364660863
                                        Kraj produkcji
                                            PL
                                        Producent
                                            
                                                Wydawnictwo Aksjomat sp. z o.o
                                                
                                                     
                                                    
                                                
                                            
                                        Podmiot odpowiedzialny
                                            Dodałeś produkt do koszyka
         
                        
                        
                            Miniatury matematyczne 71
                        
                    
                                            
                    
                    
                    14,71 zł
                                                     
                                                     
                             
                 
                 
                 
             
                 
                 
                 
                 
            
Recenzje