loading
Status zamówienia
61 651 55 95
Zaloguj się
Funkcja dostępna tylko dla zarejestrowanych użytkowników. Zaloguj się lub załóż konto aby otrzymać powiadomienie o dostępności.
Nie pamiętasz hasła?
Zaloguj się przy pomocy
Nie masz konta?
Zarejestruj się
155.4 Książki Cambridge University Press

Bayesian Inference for Gene Expression and Proteomics

Marina Vannucci

Oprawa: Miękka
155,40 zł
Produkt chwilowo niedostępny

Opis

The interdisciplinary nature of bioinformatics presents a research challenge in integrating concepts, methods, software and multiplatform data. Although there have been rapid developments in new technology and an inundation of statistical methods for addressing other types of high-throughput data, such as proteomic profiles that arise from mass spectrometry experiments. This book discusses the development and application of Bayesian methods in the analysis of high-throughput bioinformatics data that arise from medical, in particular, cancer research, as well as molecular and structural biology. The Bayesian approach has the advantage that evidence can be easily and flexibly incorporated into statistical methods. A basic overview of the biological and technical principles behind multi-platform high-throughput experimentation is followed by expert reviews of Bayesian methodology, tools and software for single group inference, group comparisons, classification and clustering, motif discovery and regulatory networks, and Bayesian networks and gene interactions. 'A text that has a systematic account of Bayesian analysis in computational biology has been needed for a long time. This book is a timely publication entirely devoted to cutting-edge Bayesian methods in genomics and proteomics research and many of its contributors are leading authorities in the field. It is thus an indispensable reference for researchers who are interested in applying Bayesian techniques in their own biological research.' Ping Ma, Department of Statistics and Institute for Genomic Biology University of Illinois at Urbana-Champaign '... an authoritative volume ... presents the state of the art statistical techniques that are starting to make an impact at the forefronts of modern scientific discovery.' Journal of the RSS 'A collection of 22 high quality chapters, authored by several distinguished groups of academic researchers ... researchers and students will appreciate an authoritative volume like the present.' Z. Q. John Lu, National Institute of Standards and Technology, Gaithersburg 'The editors have done a great job keeping the writing of diverse authors readable without great redundancy ... This book should be required reading for all graduate students of statistics, statistical researchers in this field, and students and researchers in other fields that use these technologies.' Tapabrata Maita, Journal of the American Statistician 'Overall, I find this text an excellent contribution to the literature on statistical methods for high throughput genomic and proteomic data analysis. The chapters are well written, the case studies are informative, and the range of topics covered is quite broad and generally logically grouped. I would highly recommend this text to both those people already working in the area and those wanting to break in. It is not only suitable for researchers developing their own methodologies but also for applied quantitative scientists looking for the most cutting-edge tools to analyze their high throughput datasets.' J. Sunil Rao, Biometrics1. An introduction to high-throughput bioinformatics data Keith Baggerly, Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3. Bayesian hierarchical models for inference in microarray data Anne-Mette K. Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling of two-channel microarray experiments estimating absolute mRNA concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in classification and clustering of high-throughput data Mahlet Tadesse, Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C. Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou, Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for expression data via a Dirichlet process mixture model David Dahl; 11. Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen and Christina Kendziorski; 12. Bayesian mixture model for gene expression and protein profiles Michele Guindani, Kim-Anh Do, Peter Muller and Jeffrey S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15. Nonparametric models for proteomic peak identification and quantification Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17. Identifying of DNA regulatory motifs and regulators by integrating gene expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao; 19. Estimating cellular signaling from transcription data Andrew V. Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for learning Bayesian networks from high-throughput biological data Bradley Broom and Devika Subramanian; 21. Modeling transcriptional regulation: Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample size choice for microarray experiments Peter Muller, Christian Robert and Judith Rousseau.

Szczegóły

Tytuł
Bayesian Inference for Gene Expression and Proteomics
Autor
Marina Vannucci
Rok wydania
2012
Oprawa
Miękka
Ilość stron
456
ISBN
9781107636989
EAN
9781107636989
Kraj produkcji
ES
Producent
Cambridge University Press
José Abascal 56 lok. 1°
28003 Madrid
ES
+34 91 171 58 00
[email protected]

Recenzje

Brak recenzji
5
0
4
0
3
0
2
0
1
0
Twoja recenzja
Twoja ocena:
Dziękujemy za dodanie opinii!
Pojawi się po weryfikacji administaratora.
155,40 zł
Produkt chwilowo niedostępny
Dodałeś produkt do koszyka
Produkt
Bayesian Inference for Gene Expression and Proteomics
Marina Vannucci
155,40 zł
Przejdź do koszyka
155,40 zł
Rabaty do 45% non stop Rabaty do 45% non stop
Ponad 200 tys. produktów Ponad 200 tys. produktów
Bezpieczne zakupy Bezpieczne zakupy
Tami
O firmie
Dane firmowe
dobraksiazka.pl
ul. Starołęcka 7
61-361 Poznań [email protected]
Poczta polska DPD Orlen Paczka InPost
Przelewy24 BLIK VISA MASTERCARD PAYPO