23.1
Matematyka
Wydawnictwo Uniwersytetu Jagiellońskiego
Wstęp do geometrii różniczkowej
Wydawnictwo:
Wydawnictwo Uniwersytetu Jagiellońskiego
Oprawa: Miękka
Opis
Proponowany podręcznik powstał po przeprowadzeniu cyklu 30-godzinnych wykładów ze wstępu z geometrii różniczkowej, które prowadziliśmy dla studentów II roku matematyki na Uniwersytecie Jagiellońskim. Podręcznik ten jest rozbudowany w stosunku do tego wykładu. Na jego realizację potrzeba naszym zdaniem, poświęcić 45-60 godzin wykładu. Ogólny pomysł podręcznika jest zgodny z duchem wykładu. Trudno zdecydować, jakie treści powinny się znaleźć w krótkim wykładzie pod tytułem "Wstęp do geometrii różniczkowej". Zwłaszcza, że dla wielu studentów wykład ten jest jedynym kontaktem z geometrią różniczkową w czasie całych studiów. Geometria różniczkowa jest ogromną dziedziną i każdy wybór wstępnych wiadomości byłby niewystarczający. Wystarczy zauważyć, że pięciotomowe dzieło M. Spivaka A. Comprehensive Introduction to Differential Geometry, [24], również nie zawiera wstępu do wszystkich działów geometrii różniczkowej. Na ogół, w ramach wstępu do geometrii różniczkowej wykłada się klasyczną teorię krzywych i powierzchni w R3. Jest to zgodne z kolejnością hostoryczną i ponadto dotyczy obiektów, które można zobaczyć "gołym okiem". Z drugiej jednak strony uważamy, że współczesny absolwent uważamy, że współczesny absolwent studiów matematycznych, powinien znać przynajmniej elementy analizy i geometrii na abstrakcyjnych (nie zanurzonych) rozmaitościach i wiedzieć, co to jest rozmaitość riemannowska czy koneksja. Jest to już również materiał, jak najbardziej "klasyczny", a jego znajomość jest przydatna, niekiedy zaś nieodzowna, w studiowaniu wielu innych działów matematyki, a także fizyki. Absolwent matematyki powinien być przygotowany do studiowania prac zawierających elementy wpółczesnej geometrii różniczkowej. Mając na uwadze te fakty, postanowiliśmy rozdzielić teorię krzywych od teorii powierzchni rozdziałami dotyczącymi rozmaitości i struktur metrycznych i afinicznych (zadanych koneksjami liniowymi) na rozmaitościach . Przy takiej konstrukcji wykładu, teoria powierzchni może być prezentowana z zastosowaniem wiadomości o rozmaitościach abstrakcyjnych i z użyciem tak zwanego zapisu niezmiennego, to znaczy niezależnego od układów współrzędnych. Na przykład, zamiast mówić o powierzchni jako o tworze pokrytym płatami prostymi, można mówić o 2-wymiarowych podrozmaitościach w sensie immersji. Mając już pojęcie krzywizny sekcyjnej.
Szczegóły
Tytuł
Wstęp do geometrii różniczkowej
Autor
Opozda Barbara
, Gancarzewicz Jacek
Wydawnictwo
Wydanie
1
Rok wydania
2003
Oprawa
Miękka
Ilość stron
202
Format
17.0x24.0cm
Języki
polski
ISBN
8323317682
Rodzaj
Książka
EAN
9788323317685
Kraj produkcji
PL
Producent
Wydawnictwo Uniwersytetu Jagiellońskiego
Dodałeś produkt do koszyka

Wstęp do geometrii różniczkowej
23,10 zł
Recenzje